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Abstract 

The nonminimal coupling to gravity -(R@/2 of a composite scalar field 

4 is calculated in the Nambu-Jona-Lasinio model. We find ( = l/6. The 

result is exact in a leading large-N approximation, or in a fully improved 

one-loop renormalization group approximation. We briefly discuss some 

related cosmoiogical implications. 
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I. Composite Scalar Fields and Gravitation 

The Nambu-Jona-Lasinio (NJL) model [l] is one of the few four-dimensional quan- 

tum field theories that can be treated analytically in a study of relativistic, composite 

boundstates. This model, which is closely related to the BCS theory of superconduc- 

tivity, describes the spontaneous breaking of a chiral symmetry in which a fermion $ 

forms a vacuum condensate (&) # 0 while its mass m+ is dynamically generated. 

The pairing force driving the formation of the condensate is postulated to exist at 

some high energy scale A. The scale of the generated condensate, or equivalently the 

mass of the fermion, can be arbitrarily small, though mv << A results only from 

a fine-tuning of the strength of this pairing force coupling constant. In addition to 

the appearance of massless Nambu-Goldstone bosons a scalar composite state, 4, 

composed of @, appears in the spectrum. 

While the NJL model is generally applied to study spontaneous symmetry break- 

ing, in the present paper we are interested in the induced nonminimal coupling of the 

boundstate object 4 to gravity. Thus we are using the NJL model as a laboratory 

to discuss the relationship between compositeness and gravitational interactions. Re- 

markably, we find a simple result in the usual fermion bubble approximation: < = l/S, 

i.e., f#J is conformally coupled to gravity, even though scale breaking dynamics exists 

at high energies A. Moreover, < = l/6 is an attractive renormalization group fixed 

point in the infrared in this approximation. This implies that, even if there are cor- 

rections to 4 = l/6 from irrelevant operators at A, the observed low energy coupling 

is quickly attracted to a physical or “observed” value oft = l/6 as one evolves into 

the infrared. Remarkably, even when more physics is included beyond the simple 

fermion bubble approximation by using the full on4oop renormalization group, this 

result persists. This is closely related to previous results which analyzed the RG 

behavior of l for large curvature [2]. 
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Technically, the usual treatment of the NJL model involves the solution to coupled, 

self-consistent Schwinger-Dyson equations for propagators and vertex functions, and 

is valid only in a large-N limit, where N is the number of fermion degrees of freedom 

(“colors”) flowing in a Feynman loop. Here one keeps only the effects of fermion loops 

(this is called fermion bubble approximation) and one finds the mass of (b is exactly 

m+ = 2m+ This is not to imply that 4 is a “loosely bound state;” indeed, the C$ 

particle appears point-like on all scales rn+ 5 p < A. When additional interactions 

are kept, or one goes beyond the large-N limit, then rnd # 2m+. 

Rather than carry out the more technically complicated analysis utilizing the 

Schwinger-Dyson formalism, we will follow [3] and carry out an equivalent, but much 

more transparent and easier analysis which makes use of the renormalization group. 

The key to using the renormalization group is identifying the appropriate boundary 

conditions that apply at the scale A that are a consequence of compositeness. Indeed, 

the renormalization group can be used as a dynamical tool to analyze the NJL model 

in fermion bubble approximation, but it can also be readily generalized to include all 

of the e8ect.s of the physics in the full theory to generate reliable, precise predictions 

of its consequences. This goes beyond the limited approaches of large-N fermion 

bubble sums, or planar QCD calculations. In fact, it is not clear how to perform 

comparably detailed calculations in the more cumbersome Schwinger-Dyson formal- 

ism. The renormalization group also provides the easiest means of understanding the 

physics of the theory. 

There has been considerable interest in dynamical symmetry breaking of the elec- 

troweak interactions in which a top quark condensate plays the role of the order 

parameter [3,4]. The simplest models discussed thus far are generalizations of the 

NJL model. Here the Higgs boson is composed of ft, thus the physics of the NJL 

model may be relevant to the scales of current interest in elementary particle physics. 

In the minimal version one predicts mtDp - 230 GeV and mniss, - 260 GeV [3]. How- 
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ever, we show presently that there is a third, albeit experimentally mute prediction, 

t.e., the nonminimal coupling to gravity of such a composite Higgs is determined with 

( = l/6. 

In the context of cosmology, it has been recognized that nonminimal fields could 

be employed to solve some problems associated with inflation. Several authors [5] 

have suggested that the inflaton could be the Grand Unified Theory Higgs if one 

assumed a large negative curvature coupling parameter, t x -10’. One could then 

show that radiative corrections to the Higgs potential would not generate excess met- 

ric fluctuations violating microwave background limits even if the Higgs self-coupling 

is rather large, X > 0.01. The net result is that matter fields can be naturally in- 

corporated in slow-roll inflation [6] by altering the gravitational sector. Furthermore, 

in the extended inflation model [7], it has been suggested that the bubble nucleation 

scenario of old idation [8] could be resurrected if one considered two scalar fields, 

the inflaton and a Brans-Dicke field. Here, however, small negative values of the 

curvature parameter are favored -0.01 < t < 0. 

It is clear from the present analysis that a composite boson as occurs in the pure 

NJL model will not lead to a cosmologically acceptable t. In the NJL case < = l/6 is 

a constant with scale, and there is no renormalization group evolution of this coupling 

constant. However, we emphasize that < = l/6 will generally obtain at low energies 

for any initial value of t at high energies, in any theory containing scalar bosons 

as a consequence of the infrared fixed point behavior of the renormalization group 

equations. In fact, even in a more detailed composite schemelarge irrelevant operators 

at the high energy scale A can give an essentially arbitrary initial value to [(A), 

which then evolves toward t = l/6 at low energies. Since this evolution is slow (i.e., 

logarithmic), perhaps one can exploit the phase during which t # l/6 in the context of 

inflationary cosmology. Conversely, it is imperative to consider the evolution toward 

( = l/6 in any scheme, since large ]<] is unstable under renormalization. We will not 
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address the cosmological issues further in the present paper, and turn instead to the 

analysis of the NJL model. 

II. Analysis of the NJL model 

A. Fermion Bubble Approximation 

Let $ be a a fermion field with left- and right-handed projections $h = i( 1 - 75)~ 

and 1/)~ = i(l + rs)+. Consider, for discussion, the following theory at some “high 

energy scale” A: 

L: = +J4111+ q4lt~Ra)(&~Lb) + . . . (2.1) 

Here (a,b) are indices (e.g., quark “color”) and run from 1 to N. The first term 

contains a covariant derivative D for the usual gauge invariant and generally covariant 

fermiOn kinetic term, &,,&s. The ellipsis refers to gauge boson and gravitational 

kinetic terms. We have introduced here a four-fermion interaction with a coupling 

constant G which reflects some new pairing force at the scale A, i.e., G = g$/A’. 

Above the scale A, this term “softens” into some gauge boson exchange interaction. 

For G > 0 the pairing force is attractive. 

The full Lagrangian L admits a cbiral symmetry, 

IlL + eiO*)L, *,R --t e-*Ix, (2.2) 

which forbids a mass term in the Lagrangian of the form n& = m4R$L + h.c. 

Nonetheless, if the coupling constant g+ is sufficiently strong, then the vacuum state 

will form a “chiral condensate,” (4LTh + h.c.) # 0, and the chiral symmetry will be 

spontaneously broken. 

To analyze the model we may introduce a non-dynamical auxiliary H field to 
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rewrite eq.(Z.l) equivalently as, 

12 = Lfimtk + (-3;;$& + h.e.) - M;H+H, (2.3) 

where we identify 

G = l/M;. (2.4) 

Note that eq.(2.3) must be viewed as an effective Lagrangian at the scale A; A and 

MA are independent quantities. By “effective Lagrangian at a scale p” we mean that 

all the dynamics above the scale p has been integrated out, but all dynamics below 

p must be computed. Notice that the identification of eq(2.3) with eq.(2.1) is only 

possible for G > 0. 

The structure of eq.(2.3) will change significantly, due to radiative corrections from 

Feynman loops, when we consider the effective Lagrangian at any other scale, p < A. 

The technique for descending from A top is known as the “block-spin renormalization 

group,” [9] and consists in the present case of integrating out all loops with internal 

momenta A 2 p 1 p. We will see that eq.(2.3) defines the renormalization group 

boundary conditions for the full solution to the theory of eq(2.1) at a scale p. The 

auxiliary field introduced at the scale A will become the propagating physical (Higgs) 

field at low energies Jo << A. 

The block spin renormalization group transformation performed on eq.(2.1) in flat 

space generates the following effective Lagrangien at a scale p [3]: 

L = Limetic +(~TL$RH + Lc.) 

+z~~D,HI~ - M;H+H - $(H+H)~ + . . . (2.5) 

We have included the standard induced gauge invariant kinetic terms of the Higgs 

doublet. The wave-function normalization constant, Z,, and the induced quartic 



-6- FERMILAB-Pub-91/31-T 

interaction arising from fermion loops have been calculated to be (31, 

ZH = & In (A’/$) , 

A0 = $$I* (A’/$) . 
The msss term Mi is quadratically divergent, 

(2.6) 

(2.7) 

M; = M,: - -$ (As - $) . P-8) 

The evolution of this term is ultimately a matter of our choice of defining the two 

parameters MA and A. One can “fine-tune” the theory by demanding an approximate 

cancellation between the large terms, Mi and NAa/(8?rs) in eq.(2.8). We then see 

that Mi can become negative as p -+ 0. This triggera the instability in the vacuum 

at that scale, leading to the formation of a symmetry breaking phase at low energies. 

Conventionally one renormalizes the kinetic terms of a field theory at any scale, 

1, with a condition that they have fretfield theory normalization. Indeed, this is an 

intermediate step in the block-spin RG transformation as described by Kogut and 

Wilson 191. In the previous discussion we chose not to insist upon this because of the 

singular behavior of 2~ as in eq.(2.6). However, we can transfer this singularity to a 

condition on coupling constants in the conventional normalization. That is, we may 

exercise our freedom of resealing the various fields, H and 4, to define the coefficient 

of jD,Hl’ to be unity. In the present case H -+ HI&, and the conventionally 

normalized Lagrangian becomes 

L = Lkinrtie +(S+$L~JISH + h.C-) 

+(D,HI’ - m;H+H - ;(H+H)’ + .._ (2.9) 
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where the physical coupling constants, mi, g*, and X, are given by 

m:, = M;/ZH, 
1 

g;=Q x = ‘A,. 
z:, 

(2.10) 

It is clear from eqs.(2.10) that as p -+ A, g+ and X diverge while g$/A approaches a 

constant. 

Let us now examine the low energy symmetry breaking phase. We assume that 

we have tuned the theory to produce the low energy potential in H, 

V(H) = -m;H+H + ;(H+H)‘, (2.11) 

where ma = m,,=. and eq.(2.11) is the low energy limit of the potential contained 

in eq.(2.9). The Higgs field, H = v + qS/fi, may be expanded about its vacuum 

expectation value v which is given by 

va = m;/x. (2.12) 

Moreover, by substituting the shift in eq.(2.11) we can read off the induced mass of 

the 4 excitation, 

rni = 2usX. (2.13) 

The VEV of H implies an induced mass for $J, 

mg = g+v. (2.14) 

Combining the above equations, we find that the mass of the scalar field is just twice 

that of the fermion, 

mi/m$ = 2X/g; = ~&/ZH = 4. (2.15) 

We have thus derived this familar result entirely from a block-spin renormalization 

group analysis, and we have essentially kept track only of the logarithmically evolving 
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terms, ZH and Xe, or equivalently X and g+. The quadratically evolving ME is only 

tuned to produce the vacuum instability in the i&a-red limit. 

It is useful to derive this result again from the perspective of the differential 

renormalization group equations. To obtain this renormalization group description 

of the NJL model we utilize the partial p-functions which are calculated using only 

the fermion loops: 

16~s 2 = Ngtb3, (2.16) 

16~s $ = (-4Ng; + 4Ng;X). (2.17) 

The appropriate boundary conditions are typically dictated by the behavior of eqs.(2.16, 

2.17) as p + 0. Alternatively, these may be replaced by limits as p + A, 

-%I + %&+A, (2.18) 

)Lo + $44, (2.19) 

or equivalently, in the conventional normalization, 

g+(p) --t =h“b (2.20) 

A + ml&d, (2.21) 

Now, solving eq(2.16) gives 

1 
$m= & l*(A”/d, (2.22) 

where we use the boundary condition, l/g;(A) = 0. Eq(2.17) may then be solved by 
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hypothesizing an anzatz of the form X = cg$. Substituting into eq.(2.17) one finds, 

16~’ dg’ - = $4~ - 4)Ngti3, dt 

which must be consistent with eq.(2.16). Thus c = 2 and 

1 
x0= & l*(A’l$). 

(2.23) 

(2.24) 

Note that the solutions eqs.(2.22, 2.24) are equivalent to those of eq.(2.6, 2.7) with 

the identifications of eq.(2.10). Again we recover the NJL relation 

mi/m;i = 2X/g$ = 4 (2.25) 

from eqs.(2.16, 2.17). 

B. Incorporating Gravity 

We now assume that the field theory of eq.(2.1) is placed in a weak background 

gravitational field, 

g,w=vw+h,w (2.26) 

where vry = diag(1, -1, -1, -1). Again wemay proceed to eq.(2.3) with the auxiliary 

field H as the effective Lagrangian at the scale A. 

In addition to the diagrams of Fig.(l) that led to eq.(2.9), we will now include the 

emission and absorption of gravitons. For example, the diagram of Fig.(2) represents 

the insertion of the fermionic stress-energy tensor, 

iTp = i” [ap7v + %7p + g,(-2$ - 4im)] $. (2.27) 
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It contributes O(h,) terms to the covariant kinetic and mass terms 

,& [g,(P’H)+(B”H) - M’H’H] , (2.28) 

which are related to the fi and gry factors. However, the diagram of Fig. (2) also 

generates a term q2gw - q,,qv, which is an induced coupling of the form RHtH, where 

R is the scalar curvature. Thus, the effective Lagrangian at the scale p is now found 

to be: 

t = Geinetic + ($L&H + h.c.) 

+ZrilD,HI’ - M;H+H - SoRH’H - ;(H+H)’ + . . . (2.29) 

The result of explicitly calculating Fig.(2) is 

60 = i& l*(A’/$‘) (2.30) 

We remark that the &RH+H can be inferred directly from the diagram of Fig.(2) in 

the symmetric phase of the theory (mv = 0), or from Fig.(3) in the broken phase, 

when (H) = v # 0 and the nonminimal term becomes &$,Ruc$. The results for &, 

are, of course, the same. 

In conventional normalization, the Lagrangian is 

t = bnctic + (g+$L+RH + h*c.) 

+(D,,H12 - m&HtH - tRH+H - $H+H)’ + . . . (2.31) 

and therefore the physically observed nonminimal coupling constant, [ is given by 

(2.32) 
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Eq.(2.32) is the central result of this paper. We see that the compositeness conditions 

as derived from the block-spin RG analysis are now supplemented by: 

The composite scalar field in the NJL model is conformoily coupled to gravity. 

It is interesting to study this result in the differential renormalization group (RG). 

By introducing the differential operator, 

a 
D E 167r”--, 

alnp 

the RG equation for [ = <o/Z, can be derived by considering, 

Df = D(b)/& - foD(&)lZ~. (2.35) 

In the fermion bubble approximation, we know from (2.10) that g$ = l/Za and 

hence, 

Dg; = 2Ng;. (2.36) 

Eq.(2.35) then becomes, 

Df = -;g; + 2Nfg;, (2.37) 

and the solution for the curvature coupling parameter, 

f(p) = lb39 (2.38) 

is a constant for all scales. More generally, as one descends toward the i&a-red, 

f = l/6 is an attractive fixed point. Therefore, no matter what is the initial value for 

f at the large scale A, given enough RG running time f will eventually reach l/6 for 

small p. Of course, the RG running only occurs for scales or. > mE, since for mu > p 

the fermion loops decouple. 
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The RG equation (2.37) is exact to all orders of N when only effects of the Higgs- 

Yukawa coupling constant are kept, as well as any gauge interactions with fermions 

which are not shared by $ (e.g., QCD effects). In more elaborate discussions of the 

RG equations for ( it is always found that the right hand side is proportional to 

([ - l/6) (2) at the one-loop level. Hence, the general result that .$ = l/6 is expected 

to be valid module two-loop effects. 

III. Conclusions 

We have exploited the effectiveness of the RG to give an analysis of the induced 

coupling of a composite scalar particle to gravitation. The appearance of quasi- 

infrared fixed points is interesting, and desensitizes the prediction to the details at 

the composite scale A. This analysis sheds light on the issue of nonminimal coupling, 

which is usually viewed aa an arbitrary users choice, but which is potentially dictated 

by either the composite nature of a scalar boson or by the full dynamics of the coupling 

to other fields. 

However, if one considers an arbitrary, composite or noncomposite scalar field, 

then the renormalization group equation for t, eq.(2.37), remains valid although one 

then disregards the boundary condition (2.33). As one descends in energy scale, [ 

will approach its infrared fixed point value of l/6. On the other hand, if one evolves 

to higher energy scales, [ can become quite large and negative. Hence, the running 

of the curvature coupling parameter could be important for inflationary cosmology 

which serves as a probe of very small length scales. 

Some mysteries remain. For example, why does the leading the classically confor- 

mally invariant result t = l/6 obtain? There are, afterall, scale breaking effects at 

the scale A as well as rn~. It is important to note that generally trace anomalies are 

measures of ,&functions, and this theory has a non-vanishing matter trace anomaly; 
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hence, we might expect propagation of the scale breaking effects into [. It would 

be illuminating to study the fuR trace-anomaly structure in relationship to the RG 

structure of the theory to better understand when scale invariant [ values wiII obtain, 

and why particular non-scale invariant results also can occur. We feel there may be 

deeper relationships between fine-tuning, approximate scale-invariance, nonminimal 

coupling to gravity, and dynamical symmetry breaking than we have appreciated. 

We would iike to thank Bill Bardeen for useful comments. 
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Fig.(l) Fermion loops induce 2 a and Xo for the auxilliary Higgs field in the NJL 

model. 

Fig.(2) A massless fermion loop induces the nonminimal coupling between the gravi- 

ton and the composite Higgs in the symmetric phase of the theory. 

Fig.(3) The coupling of the graviton to the Higgs can equivalently be computed in 

the broken phase where the fermion is massive, rn+ = g+ < H >= g+u # 0. 
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